

The TAPESTRY system is a software suite developed by Navigation Laboratories Inc. to provide a modeling and control gateway for our LABPRO family of GPS Constellation Simulators.

TAPESTRY supports TWO RF Outputs per PCI-DSIM-ENGINE, they can mapped as shown:

# VEHICL	.ES	RF1 ANT 1	RF2 ANT 2	RF3 ANT 3	RF4 ANT 4
¢	1			۲	69
4	2		•	🐵 / 🥹	💮 / 🍪
				· · · · · · · · · · · · · · · · · · ·	

You may use additional RF outputs to create more Vehicles (up to 4) and/or additional UE antennas.

CREATING ANOTHER VEHICLE

The Vehicle-unique elements within TAPESTRY are,

- The Vehicle Motion Profile.
- UE Antenna Characteristics [1-4 Antennas/Vehicle]
- Attached Sensors [IMU, Automotive Dead Reckoning, 1553, ...]

This document describes the *initialization* of the Vehicle Motion Profile. Once you have initialized the motion profile, it can be edited in the same fashion as Vehicle I. There are three choices; A Blank-Motion-Script creates the New Vehicle(II) with a "*blank slate*". The other two methods write into the "*blank slate*" with motion derived from Vehicle-I or a Vehicle from a different Scenario.

- Define a Route
- Import a Motion Trajectory File
- Use the Script Editor Keypad to Create a Script

Blank Motion Script

use if Vehicle-II motion is different from Vehicle-I

Vehicle-I Unchanged

Scenario *Default* used as a Template

Vehicle-II created with same Initial State* as Vehicle-I

Vehicle-II Antenna-I assigned to next unassigned RF Output

Vehicle-II GPS Lever Arm zeroed / Default Patterns Loaded

Vehicle-II Motion Script and Sensors yet to be defined (Blank)

UE Sensor Files not overwritten

• Replicate Vehicle I

[use if Vehicle-II motion is derived from Vehicle-I]

Blank-Motion-Script Created

Vehicle-II Motion Script* copied from Vehicle-I (same flight profile)

UE Sensor Files not overwritten

Replicate Vehicle from a (Source) Scenario

[use if Vehicle-II motion is derived from Vehicle-I/II from a different Scenario]

Blank-Motion-Script Created

Vehicle-II Motion Script* copied from Source-Scenario

UE Sensor Files not overwritten

Initialize from a (Source) Scenario

Use this method if Second Vehicle is to be initialized from a different Scenario. This provides a deterministic flight profile and dynamic vehicle setup from a known source. It performs the same function as **Replicate Vehicle-I** with the difference being the Second Vehicle flight (motion) profile is based upon a Vehicle in a different Scenario rather than upon Vehicle-I from the same Scenario.

Once you have created the Second Vehicle, either from a pre-existing Scenario or from Vehicle-I of the same Scenario, you can modify the *Initial Navigation State* using the control **Navigation**, This technique provides a mechanism in which two vehicles fly the same flight profile with one vehicle offset in location relative to the other.

CREATING ANOTHER VEHICLE USING VEHICLE-I AS A TEMPLATE*

CREATING A VEHICLE USING ANOTHER SCENARIO AS A TEMPLATE*

Whichever method is used to initialize Vehicle-II, the Antenna Lever Arm of Vehicle-II is "0" irrespective of the setting in the *Source Scenario*. In addition, no apriori Sensors assignments are made. To create a Lever Arm or assign a Sensors use the usual controls;

* Within Tapestry, a Template is a set of files that specify the Vehicle Motion-Trajectory

CREATING ANOTHER ANTENNA

The Vehicle-unique elements within TAPESTRY are,

- The Vehicle Motion Profile.
- UE Antenna Characteristics [1-4 Antennas/Vehicle]
- Attached Sensors [IMU, Automotive Dead Reckoning, 1553, ...]

This document provides the procedure for <u>adding</u> an <u>additional antenna</u> to the current Vehicle. By convention, when a Scenario is created, Vehicle-I Antenna-I (V1A1) is unconditionally assigned to RF #1.

Multiple-RF Tapestry Scenarios are most commonly used for testing host vehicles with two or more Antennas. To add a second, a third, a forth antenna, begin with the selection of **Create another Antenna**.

Note: Your simulator must have multiple RF Outputs to use these feature

Assign to next RF Output

Automatically creates an Antenna, associating it with the current Vehicle and an RF Output. The new Antenna is co-located with the Vehicle center-of-gravity (cg) resulting a zero Antenna Lever Arm.

